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In the field of time series forecasting, deep learning and dynamics-based methods are two
main research directions. The former focuses on the temporal information of the data while
the latter emphasizes on the spatial information of the data, and rare methods combine the
two information properly. In order to make better use of the information in the data, we
propose the STSM (spatiotemporal skip-connection model) based on the dynamics frame-
work, which contains a temporal module composed of CNN and a spatial module composed
of fully connected layers, as well as a skip connection to the original input to fuse temporal,
spatial, and global information in the data. To predict the future value of the target variable,
STSM is required to learn a mapping from original attractors to delay attractors in an end-
to-end framework. The results of ablation and contrast experiments on one simulated data-
set and seven real-world datasets show that STSM not only performs better than a separate
temporal or spatial module, but also predicts more accurately than other traditional meth-
ods. Besides, we verify the robustness of the model in different scenarios through several
experiments.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

In today’s highly information-based era, a huge amount of time series data has been generated in various disciplines of
scientific research [1]. For example, in the field of biology, driven by gene sequencing technology, high-throughput biological
data has grown rapidly [2], such situation also appears in atmospheric science[3] and intelligent transportation[4]. In this
case, many researchers are facing huge analysis needs for high-dimensional time series data.

Historically, many theories have been proposed to solve the problem of time series prediction. Early methods are often
based on parametric models, like autoregressive models and moving average models as well as their variants [5–7]. The dis-
advantage of such models is that they cannot model the relationship between high-dimensional data and have strong con-
straints on the stability of time series data. With the development of machine learning and deep learning, related methods
have been widly applied in the field of time series prediction, such as support vector regression [8–10], gaussian process [11],
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feedforward neural network [12–14], convolutional neural network [15], recursive neural network [16–18] and so on. Com-
pared with previous methods, they have fewer constraints on the data and enjoy a higher degree of approximation. However,
the interpretability is not enough due to the inherent property of black box models, and the information from time and space
cannot be combined well. Some methods under the dynamics framework [19–21] have better interpretability. But the short-
comings are obvious, too much attention is paid to spatial information while ignoring temporal information, and it also has
high requirements for the chaos of the system.

In order to properly combine the spatial and temporal information on high-dimensional data to make better predictions,
we propose a new model called Spatiotemporal skip-connection model (STSM for short) in this paper, which can simultane-
ously make temporal transformation, make spatial transformation and keep global information with temporal module, spa-
tial module and skip connection respectively, and combine the spatial, temporal, and global information to make predictions.
Before describing STSM, we need to introduce the concept of attractor: under the dynamics framework, high-dimensional
variables and their changing process over time constitute a dynamic system, and all variables in the system constitute a
phase space, the development of phase space tends to a relatively stable state called attractor. And in this study, we consider
the local sampling of high-dimensional data as original attractors, the continuation of the target variable in time as delay
attractors. Based on the Takens theorm [22], STSM tries to reconstruct delay attractors from original attractors by solving
a mapping between them, so that the dynamic information in the high-dimensional data can be converted into the temporal
information of the target variable. Specifically, we repeatedly sample the training data to get several pairs of original and
delay attractors, take them as input and output of STSM respectively to learn the mapping. Although it seems that STSM
can only make short-term predictions, we can get long-term prediction through an iterative process, in which the output
of the previous prediction is used as the input of the next step. The results of contrast, ablation and robustness experiments
on synthetic and real-world datasets show that STSM model can make more accurate predictions with strong robustness
than traditional methods. In all, we make following contributions in this paper.

� Rather than utilizing the spatial information from high-dimensional data to make predictions directly like traditional
dynamic methods, we want to combine the spatial information and temporal information properly to get better results.
To prove the feasibility of our idea, we propose a model called STSM based on Takens theorem to predict target variable
from high-dimensional data, which contains a temporal module, a spatial module and a skip connection to the original
input to combine spatial, temporal and global information.

� We conduct several experiments on different datasets to test the ability of our model. It can be seen from the figures and
indicators of contrast experiments that STSM surpasses other traditional time series prediction models in terms of pre-
dictive effects. And ablation experiments show that each module of our model is indispensable. Besides, the robustness
experiments indicate the potential of STSM in combating noise, adapting to different initialization parameters as well as
hyperparameters, dealing with time variability and making long-term prediction

The rest of this paper is organized as follows. In Section 2, we summarize related work from the perspective of predicting
low-dimensional and high-dimensional data, the advantages and disadvantages of different models are compared in a fair
way at the same time. Section 3 gives a definition of the prediction problem and explains how to apply Takens theorem
to solve it under the dynamics framework, then our STSM model is introduced from the whole to the part. In Section 4,
we do several experiments on one simulated Lorentz dataset and seven real-world datasets, the results of these contrast
experiments, ablation experiments and robustness experiments are carefully analyzed. Finally, Section 5 draws the conclu-
sion, analyses the advantages and disadvantages of STSM, and points out the direction for improvements in the future.

2. Related work

This chapter aims to summarize and compare the traditional models and algorithms for time series forecasting, show the
advantages and disadvantages of different models, so as to highlight the main improvements of this work. The following con-
tents will be divided into two parts to introduce models for predicting low-dimensional (univariate) and high-dimensional
(multivariate) time series respectively.

2.1. Low-dimensional data predictors

This field mainly relies on methods based on parametric models, the solving process of such models can be divided into
three steps: determine which model should be used according to the characteristics of the data; calculate the model param-
eters; use the model to make predictions and evaluate effects [23]. The definitions of common models are as follows.

Autoregressive model (AR) is a model with p-step uncorrelated property. Its basic idea is to model the influence of his-
torical data on current data [5]. Suppose that Xt represents the time series value corresponding to time t; c represents the
constant term, p represents the magnitude of the order for AR, and et represents noise at time t, a1; a2; . . . ; ap represent
the corresponding weight coefficients of AR. Then AR(p) can be expressed by the following formula:
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Xt ¼ c þ
Xp
i¼1

aiXt�i þ et : ð1Þ
Moving average model (MA) is a stationary sequence model with q-step uncorrelated properties. Its basic idea is to focus on
the accumulation of error terms, and use the linear combination of the forecast errors at several previous moments to predict
the current value, enabling it to effectively eliminate the random error in the prediction [6]. Similar to the assumption above,
suppose that l represents the constant term, q represents the magnitude of the order for MA, b1; b2; . . . ; bq represent the cor-
responding weight coefficients of MA. Then MA(q) can be expressed by the following formula, note that when AR is high-
order (p is large), it can be approximated by a low-order MA (q is small) [7]:
Xt ¼ l þ
Xq
i¼1

biet�i þ et : ð2Þ
Autoregressive moving average model (ARMA) is a mixture of AR model and MA model [7], suppose that p; q represent the
magnitude of the order for AR and MA respectively, then ARMA(p; q) can be expressed by the following formula:
Xt ¼ c þ
Xp
i¼1

aiXt�i þ l þ
Xq
i¼1

biet�i þ et: ð3Þ
The aforementioned models have strict requirements on the stability of the data, namely that the mean value of the time
series data is not allowed to change significantly over time. If the data fluctuates greatly, this requirement cannot be met.
In this case, the stable data meeting the requirements of these models can be obtained by the difference method. On the basis
of ARMA, autoregressive integrated moving average model (ARIMA) makes d-order difference on data to expand its applica-
tion scenarios.

The above models have been widely applied in the field of time series prediction with the advantages of simplicity, effec-
tiveness and strong interpretability. But they have high requirements for data (the original data or the data after difference
must satisfy the stationarity hypothesis), and can only identify linear associations in time, making them face more and more
restrictions in the context of continuously enriching time series data types.

2.2. High-dimensional data predictors

Due to the complex interactions between different variables of high-dimensional data, simple linear models cannot be
used to describe such systems and make accurate predictions. Machine learning, deep learning, and some dynamics-
based methods have better performance on this task.

A lot of machine learning methods have been applied to predict high-dimensional data. Support vector regression (SVR)
has advantages in solving nonlinear regression by introducing the kernel methods, it has been widely researched in the field
of financial time series forecasting, from single use [24] to combination with evidence framework [25] and random forest [8].
Bayesian Network (BN) use probabilistic networks for uncertainty reasoning [9], after combining domain knowledge and BN-
based semantic network, the multivariate forecasting task on meteorological time series can be completed well [10]. Gauss
process (GP) can also utilize kernel methods to enhance prediction capability, in order to solve the problem of high compu-
tational complexity, some studies have combined it with the KNN and Kalman filter to calculate more efficiently [11].

As some machine learning methods need to manually select kernels, and their computational complexity is unacceptable
while processing high-dimensional data, several deep learning methods have become feasible alternatives. Feedforward
neural network (FNN) is the simplest artificial neural network, it can be used to analyse time series directly [12] or combined
with autoencoders to predict indoor temperature [13] and traffic flow [14]. Convolutional neural network (CNN) specializes
in processing data with grid structures, some researchers have used two CNNs to convolve the input data on the rows and
columns to predict asynchronous time series [15]. Recursive neural network (RNN) can capture the association of data for a
longer time with the use of the saved states, and has been widely used in time series prediction and natural language pro-
cessing. Further more, long short-termmemory (LSTM) with attention can overcome the vanishing gradient problem in RNN,
enabling it to predict financial time series on a larger time scale [16]. Besides, the mixed use of multiple models has become a
new trend. For example, long- and short-term time-series network tries to use CNN to extract the correlation between data
in a short time scale, and use RNN to extract the correlation between data in a long time scale [17]; LSTM networks with
temporal pattern attention use CNN to capture the signal pattern in the hidden layer of RNN [18]. The shortcomings of deep
learning methods include complex model structure, poor interpretability, and large demand for data. Considering that com-
plex systems composed of multiple variables often have varing degrees of chaos [26], dynamics-based models are expected
to perform better in this case.

Under the dynamics framework, high-dimensional variables and their changing process over time constitute a dynamic
system [27], so there are many methods based on dynamics to extract the spatial information from complex interactions
among variables and predict the changing trend of the system. The common goal of these methods is to obtain the mapping
from the original attractor to the delay attractor of the system, one idea is to use compressed sensing algorithms to directly
calculate the mapping [19], another way is to decompose the mapping into several sub-mappings, then use GP [20] or FNN
[21] to solve them.
479



J. Wang, C. Chen, Z. Zheng et al. Information Sciences 607 (2022) 477–492
The above methods have their own advantages and disadvantages, but they all focus on extracting the temporal or spatial
characteristics of the data, and cannot combine the two well. For this reason, we propose STSM to make up for this
deficiency.

3. Model

3.1. Problem Formulation

In this work, we focus on inferring the evolution trend of a single variable from the overall dynamics of a high-
dimensional system. Suppose one system contains N variables including x1; x2; . . . ; xN , when N is large enough, the system
is high-dimensional. We make M continuous observations to get a original attractor O. If the observation starts at time t,
the interval between observations is s, then the time point of the i-th observation can be written as ti ¼ t þ is, and the value
of xj at ti is xjðtiÞ. The content of O can be written as a matrix X 2 RN�M ¼ ½X t1ð Þ;X t2ð Þ; . . . ;X tMð Þ�, where

X tmð Þ ¼ ½x1 tmð Þ; x2 tmð Þ; . . . ; xNðtmÞ�T .
Suppose xk is the target variable to be predicted. If our goal is to predict L steps forward for xk, the model’s task is to pre-

dict values of x̂Lk ¼ ½x̂k tMþ1ð Þ; x̂k tMþ2ð Þ; . . . ; x̂k tMþLð Þ�. But we don’t predict x̂Lk directly, instead, we compute the delay attractor
D for xk and extract x̂Lk from it. The results of expanding X and D by elements are as follows, if the box counting dimension of
the attractor O is d and L > 2d� 1, then the delay embedding theorem shows that, there exists a mapping from O to D [22],
and we aim to solve the mapping with STSM.
X ¼

x1 t1ð Þ x1 t2ð Þ � � � x1 tMð Þ
x2 t1ð Þ x2 t2ð Þ � � � x2 tMð Þ
x3 t1ð Þ x3 t2ð Þ � � � x3 tMð Þ
x4 t1ð Þ x4 t2ð Þ � � � x4 tMð Þ

..

. ..
. ..

. ..
.

xN t1ð Þ xN t2ð Þ � � � xN tMð Þ

2
6666666664

3
7777777775
; ð4Þ

D ¼

xk t1ð Þ xk t2ð Þ � � � xk tMð Þ
xk t2ð Þ xk t3ð Þ � � � xk tMþ1ð Þ
xk t3ð Þ xk t4ð Þ � � � xk tMþ2ð Þ
xk t4ð Þ xk t5ð Þ � � � xk tMþ3ð Þ

..

. ..
. ..

. ..
.

xk tLþ1ð Þ xk tLþ2ð Þ � � � xk tMþLð Þ

2
6666666664

3
7777777775
: ð5Þ
Next, we will introduce our model from whole to part, the meaning of notations used in this section can be found from
Table 1.

3.2. Model Architecture

As illustrated in Fig. 1, the STSM can be abstracted as a mapping W totally, which can compute delay attractor D from
original attractor O. Note that to align dimensions and simplify calculations, we take the transposition of attractors as input
and output, W can be defined as follows.
W XT 2 RM�N
� �

¼ DT 2 RM�ðLþ1Þ: ð6Þ
TheW here can be regarded as a multi-step predictor, which can predict the L-step values of xk once. In fact, it can be decom-
posed into several single-step predictors fW1;W2; . . . ;WL;WLþ1g, and the meaning of Wi is:
Wi XT tmð Þ
� �

¼ xk tmþi�1ð Þ: ð7Þ
Then we can write above formula in matrix form, the right half of the equation is the transposition of the required delay
attractor D:
W XT
� �

¼

W1 X t1ð Þð Þ W2 X t1ð Þð Þ � � � WLþ1 X t1ð Þð Þ
W1 X t2ð Þð Þ W2 X t2ð Þð Þ � � � WLþ1 X t2ð Þð Þ

..

. ..
. ..

. ..
.

W1 X tMð Þð Þ W2 X tMð Þð Þ � � � WLþ1 X tMð Þð Þ

2
66664

3
77775 ¼

xk t1ð Þ xk t2ð Þ � � � xk tLþ1ð Þ
xk t2ð Þ xk t3ð Þ � � � xk tLþ2ð Þ

..

. ..
. ..

. ..
.

xk tMð Þ xk tMþ2ð Þ � � � xk tMþLð Þ

2
66664

3
77775 ¼ DT : ð8Þ
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Table 1
Notations used in the model.

Parameter Description

N The number of variables
M The time length of the known data

XT 2 RM�N The input of our model

XT
i 2 Ri�N The value of XT until the i-th time point

XT tið Þ 2 R1�N The value of XT at the i-th time point
L The time length to predict
xk The target variable to be predicted
x̂Lk The predicted values of xk
xi tj
� �

The i-th variable at the j-th time point
w The mapping used to obtain time features
tf The dimension of time features

F 2 RM�tf The time features extracted by w

wi The i-th sub-mapping for time features

Fi 2 R1�tf The time features extracted by wi

C The kind of kernels in size of temporal module
nc The number of the c-th kind of kernels
cni The number of kernel types available for wi

/ The mapping used to obtain space features
sf The dimension of space features

G 2 RM�sf The space features extracted from XT by /
/i The i-th sub-mapping for space features

Gi 2 R1�sf The space features extracted by /i

O The original system attractor
d The box counting dimension of O
D The delay attractor for xk
W The mapping from XT to DT

Wi The sub-mapping of W
H The mixture of XT ;G and F

U The mapping from H to DT

J. Wang, C. Chen, Z. Zheng et al. Information Sciences 607 (2022) 477–492
The detailed structure of STSM is shown in Fig. 1, it combines a temporal module, a spatial module and a skip connection to
make predictions. The spatial module uses a mapping / to make spatial transformation and get space features G from XT , and
the temporal module uses a mapping w to make tempotal transformation and get time featuresF from XT . In order to reduce
the difficulty of gradient solution caused by too deep network and keep more global information, we create a skip connection
connected to XT . The mixed H concatenating G;F and XT will be sent to a mapping U implemented by a simple forward
neural network to get DT . the loss function L is the root mean square error function of DT as follows. The structure of tem-
poral module and spatial module will be intruduced in next sections.
LðWðXTÞ;DTÞ ¼ LðUðHÞ;DTÞ ¼ LðUð½/ðXTÞ;wðXTÞ;XT �Þ;DTÞ: ð9Þ
3.3. Temporal module

Considering the evolution of time series data in time, the current value of time series is often affected by historical values,
so we use temporal module to make temporal transformation and reflect this hypothesis. The temporal module aims to mine
temporal information from historical values of system variables. If the dimension of time features is tf , the module can be
defined as the following mapping w:
wðXT 2 RM�NÞ ¼ F 2 RM�tf : ð10Þ
As the basic assumption of the temporal module is that the time features of the current time point depend on the compre-
hensive consideration from the characteristics of the past several time points, so when we try to obtain the time features of
the i-th time points, the previous data from 1-th to i-th is required. If Xi ¼ ½X t1ð Þ;X t2ð Þ; . . . ;X tið Þ�, the sub-mapping wi is
defined to get time features of the i-th time point, where i ¼ 1;2; . . . ;M:
wið½X t1ð Þ;X t2ð Þ; . . . ;X tið Þ�TÞ ¼ wiðXT
i 2 Ri�NÞ ¼ Fi 2 R1�tf : ð11Þ
In order to obtain time features of different scales, the mapping w contains several convolution kernels with increasing size.
If there are C kinds of kernels in size totally, the c-th kind of kernels’ size is ½c;N� for c in 1;2; . . . ;C, and the number of the c-th

kind of kernels (’channels’ in other words) can be written as nc. For one sub-mapping wi, as its input X
T
i 2 Ri�N , the used ker-
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Fig. 1. Neural network calculation process of mapping W. (a) The calculation process at attractor level, the green part is the original attractor composed of
several time series on the left side, and the orange part which becomes more distorted in shape is the result of spatial transformation by mapping /, the blue
part which becomes more continuous in shape is the result of temporal transformation by mapping w. Finally, these parts are used to construct the yellow
part, which corresponds to the delay attractor, and on the right is the delayed time series it contains. The circle marked on the figure shows how a point on
the original attractor is transformed into the final state by these mappings. (b) The calculation process at matrix level, note that the matrix is one-to-one in
color with the attractor above, and the value of the specific elements in the original attractor and the delay attractor is displayed at the bottom, in which the
red value is to be predicted.
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nels’ widths are not allowed to be more than that of input data, so the maximum number of available convolution kernel
types for wi is cni ¼ minðC; iÞ.

There are three steps to calculate Fi: multiple convolution for multi-scale information; max pooling for most important
information; merging and forward for final features. Take wi as example, after first step, we can get cni feature maps with size
½n1; i�; ½n2; i� 1�; . . . ; ½ncni ; i� cni þ 1� respectively; then, sizes of these feature maps are reduced to
½1; i�; ½1; i� 1�; . . . ; ½1; i� cni þ 1� respectively by max pooling; finally, we merge these feature maps to get a vector with size
½1;Pcni

j¼1i� jþ 1�, this vector will be fed into fully connected layers to obtain Fi with size ½1; tf �. The details are shown in
Fig. 2. After getting each Fi, it’s easy to concat them to get F, that’s the overall framework of the temporal module.

3.4. Spatial module

Considering that different variables in the system will influence each other, we use spatial module to make the spatial
transformation and obtain the space features. If the dimension of space features is sf , the module can be defined as the fol-
lowing mapping /:
482



Fig. 2. Neural network calculation process of sub-mapping wi . (a) The schematic illustration of the sub-mapping w1. (b) The schematic illustration of the
sub-mapping w2, compared with w1, the size of input data and the number of available kernels have changed a lot, you can see it from blocks of different
colours. (c) The schematic illustration of the sub-mapping wM , it can be inferred easily according to the rules shown in the figure.

Fig. 3. Neural network calculation process of sub-mapping /i. The feedforward neural network can be divided into input layer, hidden layer and output
layer, note that the hidden layer is composed of several hidden units.

J. Wang, C. Chen, Z. Zheng et al. Information Sciences 607 (2022) 477–492
/ðXT 2 RM�NÞ ¼ G 2 RM�sf : ð12Þ

Similarly, we can define submapping /i to get space features of the i-th time point, where i ¼ 1;2; . . . ;M:
483
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/iðXT tið Þ 2 R1�NÞ ¼ Gi 2 R1�sf : ð13Þ

As Gi is only affected by values of system variables at the current moment, so / can be implemented by a feedforward neural
network shown in Fig. 3, and the simple structure performs well in the experiment.

4. Experiments

This chapter mainly introduces some details of our experiments, including information of datasets, experimental setup,
evaluation indicators, experimental results and corresponding analysis. The contrast experiments and ablation experiments
are carried out on synthetic datasets and real-world datasets, and we do several robustness experiments to test the stability
of STSM in the end, they will be introduced respectively below.

4.1. Experimental Setting

In the real world, with the development of big data, more and more high-dimensional data has been generated from var-
ious scenarios like meteorological forecast, traffic monitoring and gene sequencing. To test the ability of our model to solve
real problems, we do experiments on one synthetic dataset based on Lorentz system and seven real-world datasets including
gene expression dataset, wind speed dataset, air pollutants and inpatients dataset, traffic flow dataset, Plankton dataset,
solar energy dataset and electricity consumption dataset. In order to quantify the prediction effect, we will introduce some
evaluation indicators. Assuming that the predicted length of the target variable is L, the estimated value calculated by a cer-
tain model is ŷ, and the actual value is y, then the following indicators are used to measure the effectiveness of the model:
mean absolute error (MAE), root mean squard error (RMSE), pearson correlation coefficient (Pearsonr). Note that MAE and
RMSE focus on the absolute error of predicted values, while Pearsonr is more sensitive to the trend of predicted values, they
are calculated as follows.
MAE y; ŷð Þ ¼ 1
L

XL
i¼1

yi � ŷij j: ð14Þ

RMSE y; ŷð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL
i¼1

yi � ŷið Þ2
vuut : ð15Þ

Pearsonr y; ŷð Þ ¼
L
XL
i¼1

yiŷi �
XL
i¼1

yi
XL
i¼1

ŷiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
XL
i¼1

y2i �
XL
i¼1

yi

 !2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L
XL
i¼1

ŷ2i �
XL
i¼1

ŷi

 !2
vuut

: ð16Þ
4.2. Contrast & ablation experiments

To test the prediction effect of STSM, we do contrast experiments to compare STSM with other models including autore-
gressive model (AR), autoregressive integrated moving average model (ARIMA), and long short-term memory (LSTM). In
order to verify that our idea of combining time features and space features is reasonable, we test the performance of STSM,
spatiotemporal model as well as spatial model and temporal model (the space features and time features will be sent to a
simple feedforward neural network directly to predict for the last two) in ablation experiments, note that spatiotemporal
model can be regarded as the combination of the spatial model and temporal model or a simplified STSM without skip con-
nection. These two experiments are carried out on all datasets at the same time, the results are shown below.

4.2.1. Lorentz dataset
To validate our model’s abiltity of capturing the dynamics of high-dimensional nonlinear system, we construct a coupled

Lorentz system with 90 variables. The i-th (i ¼ 1;2; . . . ;30) coupled subsystem contains three variable a; b; c, which can be
given by
_ai ¼ rðtÞ bi � aið Þ þ Cai�1;

_bi ¼ qai � bi � aici;
_ci ¼ �bci þ aibi

8><
>: ð17Þ
In our experiment, we set q ¼ 28; b ¼ 8
3 ; C ¼ 0:1 to compute variables in the system. Among all 90 variables, we select

three variables called ’x, y, z’ randomly to predict. M for each variable is 40 and N is 90, the embedding length is 19 (in other
words, L is 18).
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Fig. 4. Performance of different models on the Lorentz dataset. (a) Performance of different models on Lorentz-x. (b) Performance of different models on
Lorentz-y. (c) Performance of different models on Lorentz-z.
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From Fig. 4 we can see that compared with individual spatial model and temporal model, STSM and spatiotemporal model
preform better on the Lorentz system. It’s worth noting that the predicted results of spatial model are closer to the true val-
ues than those of temporal model, indicting that space features are more important than time features while predicting vari-
ables from the Lorentz system, that’s becauce the system is time-invariant under our experimental setup. So we make
dimension of time features (tf ) smaller than dimension of space features (sf ) in STSM and spatiotemporal model to make full
use of this point. Detailed evaluation indicators are shown in the table, note that the best indicators for each line are high-
lighted in bold.

Although STSM and spatiotemporal model are difficult to distinguish on curves, it can be seen that the former is still bet-
ter than the latter from Table 2 on almost all indicators of different variables in the Lorentz system, showing the strong com-
petitiveness of the STSM model on synthetic datasets.
4.2.2. Gene expression dataset
This dataset contains the gene expression profiles measured on the laboratory rat cultured cells from SCN, the expression

of 31099 genes is recorded on 23 time points [28]. To make the calculation process more efficient, we reduce the dim N to 84,
several genes about circadian rhythm are selected for prediction. We use 8 time points as the training data and make pre-
dictions on the next 4 time points (M = 8, L = 4).

The results of contrast and ablation experiments are shown in Fig. 5, STSM has a better performance. Detailed evaluation
indicators are shown in Table 2, the effect of our model is significantly improved compared to similar models on most
indicators.
4.2.3. Wind speed dataset
This dataset contains the wind speed (m/s) time series of 155 stations in Japan [29], which are sampled every 10 min from

2010 to 2012, so N (the dimention of the system) is 155. We resample the dataset with time interval dt ¼ 1 hour to reduce
the influence of noise and accidental factors. We use 100 time points as the training data and make predictions on the next
60 time points (M = 100, L = 60).

We do several experiments introduced above, and the results are shown in Fig. 6(a), as the curve of temporal model is too
flat to reflect the trend, we give the spatial model higher weight. Detailed evaluation indicators are shown in Table 2, our
model performs better than similar models on all indicators.
4.2.4. Air pollutants and inpatients dataset
This dataset contains the cardiovascular inpatients and common air pollutant indices from 1994 to 1995 in HK [30], the

dim N is 22. We use 72 time points as the training data and make predictions on the next 36 time points (M = 72, L = 36).
The results of experiments are shown in Fig. 6(b), it’s clear that STSM preforms best on the dataset. Detailed evaluation

indicators are shown in Table 2, our model performs better than similar models on all indicators. Note that the curves of both
spatial model and temporal model are almost straight, but their combination performs well, indicting the validity of STSM.
4.2.5. Traffic flow dataset
This dataset is obtained from the Caltrans Performance Measurement System (PeMS), containing the traffic flow of several

stations within half a year in California, the dim N (the number of sampling points) is 33. The raw data is sampled every
5 min, to get more stable results, we resample the dataset with time interval dt ¼ 15 minutes. We use 64 time points as
the training data and make predictions on the next 31 time points (M = 64, L = 31).

The results of different models are shown in Fig. 6(c), STSMmakes the most accurate prediction. Detailed evaluation indi-
cators are shown in Table 2, our model performs better than similar models on all indicators. Note that the curve of spatial
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Table 2
Indicitors of different models on target variables from different datasets, variables randomly selected by index are represented by’-’, the best indicators are
shown in bold.

Dataset Variable Indicator AR ARIMA LSTM Spatial
Model

Temporal
Model

Spatiotemporal
Model

STSM

Lorentz x MAE 3.29 1.50 2.14 0.47 1.12 0.13 0.05
RMSE 4.34 2.77 2.16 0.48 1.37 0.17 0.05

Pearsonr 0.8552 -
0.8548

0.9986 0.9928 -0.6954 0.9936 0.9984

y MAE 2.01 0.65 1.64 1.50 1.72 0.54 0.08
RMSE 2.79 1.15 2.02 1.55 2.22 0.65 0.10

Pearsonr 0.9437 0.9491 0.9985 0.9851 0.9961 0.9999 0.9993
z MAE 10.02 2.70 6.74 0.80 2.82 0.32 0.17

RMSE 10.93 2.95 7.06 0.94 3.11 0.52 0.20
Pearsonr -

0.9919
0.9738 0.9882 0.9985 0.9930 0.9959 0.9992

Gene expression Kif3c MAE 11.33 10.27 8.39 9.97 11.63 8,85 6.90
RMSE 12.27 11.24 9.88 12.10 14.30 10.63 8.11

Pearsonr -
0.3110

0.0777 0.5573 0.8301 0.9250 0.8682 0.9693

Bmal1 MAE 23.80 16.05 13.37 12.77 14.85 5.70 4.91
RMSE 25.19 16.31 19.64 13.43 18.12 7.59 5.62

Pearsonr -
0.4923

0.5046 0.5779 0.9925 0.8771 0.9924 0.9755

Cry1 MAE 17.95 18.39 35.93 16.24 24.18 14.16 9.46
RMSE 23.15 22.22 47.70 18.05 31.60 16.74 12.29

Pearsonr 0.9090 0.8799 -
0.8608

0.9679 0.9358 0.9677 0.9696

Mapk6 MAE 17.40 19.17 16.27 32.34 16.70 15.44 10.42
RMSE 17.90 20.96 17.17 34.86 19.69 15.66 13.36

Pearsonr -
0.5634

-
0.7734

0.7789 0.9876 0.8756 0.9468 0.9800

Wind speed - MAE 1.52 1.49 1.11 0.84 1.54 0.40 0.39
RMSE 1.87 1.86 1.48 1.14 1.79 0.72 0.57

Pearsonr -
0.3409

0.1393 0.8128 0.8286 -0.5145 0.9291 0.9598

Air pollutants and
inpatients

- MAE 24.17 23.16 23.78 24.91 25.50 11.40 10.41
RMSE 28.44 28.10 30.51 28.87 29.13 14.00 12.30

Pearsonr 0.1885 0.2397 -
0.0652

-0.2527 -0.2626 0.8908 0.9153

Traffic flow - MAE 49.02 56.41 75.88 44.13 25.10 10.98 9.88
RMSE 54.44 70.05 91.25 49.02 29.98 14.61 13.74

Pearsonr 0.9448 0.9761 -
0.9362

0.9684 0.9592 0.9866 0.9860

Plankton oxygen MAE 0.17 0.32 0.45 0.64 0.48 0.28 0.03
RMSE 0.20 0.33 0.45 0.64 0.48 0.28 0.03

Pearsonr -
0.9355

-
0.2515

0.8785 0.9693 0.9595 0.9156 0.9025

Solar energy - MAE 9.58 8.85 1.79 3.01 9.89 0.43 0.39
RMSE 10.02 9.51 2.66 4.76 11.17 0.93 0.79

Pearsonr -
0.2869

0.1643 0.8606 0.3869 -0.4017 0.9824 0.9881

Electricity consumption - MAE 473.28 452.89 524.70 526.26 475.67 110.96 92.68
RMSE 562.63 542.51 575.49 576.24 530.89 149.29 119.36

Pearsonr 0.2990 0.3538 -
0.3057

-0.0469 0.6455 0.9706 0.9813
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model is higher than real data but the curve of temporal model is lower than real data, the spatiotemporal model and STSM
model give the closest result.

4.2.6. Plankton dataset
This dataset is obtained from the optical plankton counter (OPC), including the changes of several biochemical indexes in

seawater [31], the dim N (the number of the indexes) is 58. The raw data is updated every second. We use 12 time points as
the training data and make predictions for dissolved oxygen concentration on the next 5 time points (M = 12, L = 5).

The experiment results are shown in Fig. 6(d), indicating that STSM preforms best on the dataset. Detailed evaluation
indicators are shown in Table 2, our model performs better than similar models on most indicators. Note that the curve
of spatial model is higher than real data and the curve of temporal model is lower than real data although they can reflect
the trend of data, spatiotemporal model has reduced the prediction error greatly, while STSM model combines their advan-
tages well and gives a perfect result.
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Fig. 5. Performance of different models on the gene expression dataset. (a) Performance of different models on kif3c. (b) Performance of different models on
Bmal1. (c) Performance of different models on Cry1. (d) Performance of different models on Mapk6.
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4.2.7. Solar energy dataset
This dataset contains the solar power production records in the year of 2006, which is sampled every 10 min from 137 PV

plants in Alabama State [17], the dim N is 137. We use 200 time points as the training data and make predictions for solar
power production of a random plant on the next 100 time points (M = 200, L = 100).

The results of contrast and ablation experiments are shown in Fig. 6(e), indicating that STSM preforms best on the dataset.
Detailed evaluation indicators are shown in Table 2, our model significantly outperforms similar models on all indicators.
4.2.8. Electricity consumption dataset
This dataset contains the electricity consumption in kWh recorded every 15 min from 2011 to 2014 [17], the dim N (the

number of the clients) is 321. As some records are lost, the data in 2011 has been eliminated. The data is resampled to reflect
hourly consumption. We use 100 time points as the training data and make predictions for dissolved oxygen concentration
on the next 70 time points (M = 100, L = 70).

The results of different models are shown in Fig. 6(f), indicating that STSM preforms best on the dataset. Detailed eval-
uation indicators are shown in Table 2, indicating that our model is superior over other competitors.
4.2.9. Learning issues
In actual practice, the scale of data varies for specific scenes, and the leaning curve of prediction model is expected to

converge rapidly under different conditions. To check this out, we draw the loss curves of STSM for different datasets in
Fig. 7. Note that for the sake of comparison, the loss values differing greatly from each other have been scaled logarithmically
with appropriate bases. Fig. 7a) and Fig. 7(b) show loss curves of different variables in the same dataset, while Fig. 7(c) show
loss curves of variables from different datasets. It can be found that the loss curves of variables from the same dataset or
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Fig. 6. Performance of different models on several real-world datasets. (a) Performance of different models on the wind speed dataset. (b) Performance of
different models on the air pollutants and inpatients dataset. (c) Performance of different models on the traffic flow dataset. (d) Performance of different
models on the plankton dataset. (e) Performance of different models on the solar energy dataset. (f) Performance of different models on the electricity
consumption dataset.

Fig. 7. Loss curves of STSM on different datasets. (a) Original loss curves of different variables on the Lorentz dataset. (b) Loss curves of different variables
on the Gene dataset plotted in the base-e logarithmic scale. (c) Loss curves of different datasets plotted in the base-10 logarithmic scale.
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different datasets all converge within acceptable epochs regardless of the difference in scale, proving the effectiveness of
STSM in learning issues.

4.2.10. Quantitative analysis
In this part, we provide a quantitative perspective to analyze above results. To make dimensionless comparison, the dif-

ference in MAE and RMSE is measured by percentage, and results in Pearson are simply subtracted to evaluate the improve-
ments considering the existence of negative values. For simplicity, we denote contrast models as the collection of AR, ARIMA,
LSTM; and consider ablation models including spatial model, temporal model, spatiotemporal model.

For the synthetic Lorentz dataset, STSM model is 95.68% and 82.36% lower in MAE, 96.23% and 84.89% lower in RMSE,
0.4589 and 0.1924 higher in Pearsonr compared with contrast models and ablation models respectively. For the seven
real-world datasets, STSM model is 66.73% and 52.16% lower in MAE, 63.88% and 50.87% lower in RMSE, 0.8287 and
0.2600 higher in Pearsonr compared with contrast models and ablation models respectively.

More specifically, we compare STSM and ablation models on all datasets. Overall, the spatiotemporal model is 56.20% and
50.36% lower in MAE, 59.98% and 58.54% lower in RMSE, 0.2178 and 0.4728 higher in Pearsonr compared with spatial models
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and temporal models respectively attributed to the proper combination of spatial information as well as temporal informa-
tion, the STSM model is 33.19% lower in MAE, 36.23% lower in RMSE, 0.0142 higher in Pearsonr compared with the spa-
tiotemporal model due to the supplement of global information.

4.3. Robustness experiments

When our model is applied in the real world, it may encounter some challenges. In order to test the adaptability of STSM
to external interference and its prediction potential, we conduct the following robustness experiments.

4.3.1. Time-varying robustness experiment
The original Lorentz system is time-invariant, to test STSM’s ability to predict time-variant data, we modify the constants

in the formula for generating Lorentz dataset into variables changing with time, the training length and prediction length are
consistent with the previous ones. The experimental results are shown in the Fig. 8 and Table 3. Although the prediction
effect of our model has declined, it is still acceptable. Besides, we compare the experimental results under two settings with
Fig. 8. Performance of different models on the time-variant Lorentz system. (a) Performance of different models on Lorentz-x. (b) Performance of different
models on Lorentz-y. (c) Performance of different models on Lorentz-z.

Table 3
Indicitors of different models on the time-variant Lorentz system.

Variable Indicator AR ARIMA LSTM Spatial Model Temporal Model Spatiotemporal Model STSM

Lorentz-x MAE 2.46 0.90 0.75 0.37 2.54 0.36 0.22
RMSE 3.60 1.74 0.84 0.46 2.69 0.40 0.25
Pearsonr 0.9646 0.9639 0.9984 0.9966 0.9059 0.9999 0.9996

Lorentz-y MAE 4.61 4.66 1.14 1.06 1.71 0.97 0.41
RMSE 6.02 5.98 1.24 1.16 2.41 1.12 0.46
Pearsonr 0.8998 0.7906 0.9994 0.9841 0.9116 0.9822 0.9979

Lorentz-z MAE 10.87 4.31 1.03 0.46 4.06 0.33 0.22
RMSE 11.66 7.48 1.17 0.57 4.54 0.40 0.27
Pearsonr 0.8610 0.9792 0.9971 0.9995 0.9623 0.9993 0.9999

Fig. 9. Performance of STSM on the time-variant Lorentz system and time-invariant Lorentz system with different values for tf and sf . (a) Performance on
variable x. (b) Performance on variable y. (c) Performance on variable z.
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opposite values of time features (tf ) and space features (sf ), which are shown in the Fig. 9. It’s worth noting that setting the
dimension of tf larger than dimension of sf is helpful to get better results under the time-variant setting, while the opposite
operation should be taken under the time-invariant setting. That’s because the spatial correlation of time-variant systems is
weaker than time-invariant systems, and the values of sf and tf reflect the preference of the STSMmodel for spatial and tem-
poral information.
4.3.2. Long-term prediction experiment
In order to show the potential of STSM in long-term prediction, We design an iterative scheme on the Lorentz dataset to

get longer result, in which the output of the previous prediction is used as the input of the next step. In this way, We use data
from 40 time points to predict 400 time points in the future (M = 40, L = 400) like Fig. 10, detailed evaluation indicators are
shown in Table 4.
Fig. 10. Performance of different models on the long-term prediction for Lorentz-x..

Table 4
Indicitors of different models on the long-term prediction for Lorentz-x.

Variable Indicator AR ARIMA LSTM Spatial Model Temporal Model Spatiotemporal Model STSM

Lorentz-x MAE 10.50 13.79 2.02 0.74 2.03 0.42 0.29
RMSE 12.54 16.73 2.69 1.00 2.84 0.54 0.37
Pearsonr -0.0458 -0.1030 0.9531 0.9945 0.9470 0.9986 0.9991

Fig. 11. Performance of STSM under defferent initialized neural networks on Lorentz dataset..
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Fig. 12. Performance of STSM under different conditions. (a) Performance of STSM under defferent dropout on Lorentz dataset. (b) Performance of STSM
under defferent window length on Wind speed dataset. (c) Performance of STSM under defferent noise strengths on Lorentz dataset.
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4.3.3. Parameter robustness experiment
In this part, we initialize the network 100 times randomly to study the influence caused by random initialization of the

neural network, for each step, we plot the 100 results into a histogram like Fig. 11. It’s clear that the distribution is roughly
normal and most results fall into a range near the center, indicating that our model has good adaptability to different ini-
tialization parameters.

4.3.4. Hyperparameter robustness experiment
The sensitivity of the model to hyperparameters is an important factor affecting the efficiency of training the model. If one

model is too sensitive to hyperparameters, then users have to pay more time and resources to train a suitable version. To test
robustness of STSM in this field, we test the performance of STSM on Lorentz and Wind speed dataset with different hyper-
parameters, the results are shown in Fig. 12(a) and (b). Note that the hyperpatameter ’dropout’ is a ratio from zero to one
controling the proportion of dropout operations, and the hyperparameter ’window length’ is the time span of training data,
we can see that the results don’t change a lot as the horizontal axis coordinates grow in two figures, indicating the strong
robustness for hyperparameters of our model. Besides, we can observe that the prediction effect increases first but then
decreases with the increase of window length in Fig. 12(b), it can be explained that when the window length is too small,
our model can’t learn enough dynamic information from train data; and when the window length is too large, the dynamic
knowledge learned by our model is not suitable for current stage.

4.3.5. Noise robustness experiment
Data in the real world is often not clean and contains a lot of noise. To test STSM’s adaptation to the noise, we add gaus-

sian white noise with different strength to the original data, and the results are shown in Fig. 12(c). It can be seen that the
prediction effect of the model remains at a stable level when the noise strength does not exceed 0.8, considering the small
floating range of the data, 0.8 has accounted for a considerable proportion.
5. Conclusion

In this paper, we introduce a new model called STSM to make accurate predictions for high dimensional time series data,
which can help to meet some real-life needs such as precise weather forecast, timely traffic warning, stock price prediction
and prevention for the rapid spread of infectious diseases like COVID-19. Different from traditional dynamic methods, STSM
combines the temporal, spatial, and global information in the data properly through structural innovation. We prove the effi-
ciency and rationality of our model by contrast and ablation experiments on different datasets, and we test the robustness of
our model in different scenarios, the results give us positive feedback generally. One defect of our model is that we need to
manually set the dimension of time and space features to reflect the inherent characteristics of different datasets. We hope
that there will be a calculation formula or learning algorithm for this problem in the future. Generally speaking, our model
applies a unique scheme of using data information in dynamic framework, and explores a new way for data-driven time ser-
ies prediction.
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